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ABSTRACT 

A stability criterion is presented for spinning satel­
lites, which consist of a rigid, symmetric, central body and 
four radial booms of arbitrary flexibility. 
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ATTITUDE STABILITY OF A CLASS OF 
PARTIALLY FLEXIBLE SPINNING SATELLITES 

by 

Thomas W. Flatley 


Goddard Space Flight Center 

INTRODUCTION 

Spacecraft flexibility can invalidate the well known attitude stability criterion for spinning 
satellites. That is, rotation of a satellite about the maximum moment of inertia axis for the nom­
inal spacecraft configuration may not be stable in the presence of energy dissipation. If struc­
tural flexibility permits configuration changes and strain energy storage when the spacecraft spins 
about an axis other than the nominal spin axis, a new criterion is needed. 

The class of spacecraft considered here consists of a rigid, symmetric central body with four 
equally spaced uniform radial booms nominally in a plane through the center of mass and normal 
to the intended spin axis (Figure 1). 

STABILITY CRITERION 

Approach 

Consider a forced rotation of the system at 
a rate w about a body fixed axis through the 
center of mass and at an angle a with respect to 
the nominal spin axis, with the booms in dy­
namic equilibrium. Associate with this rotation 
a moment of inertia I ( a ,  w ) ,  a kinetic energy Figure 1-Satellite configuration. 
1/2 IW*, and a potential energy V ( a ,  w ) .  

Consider also a rotation about the nominal spin axis with an equivalent angular momentum. 
Associate with this rotation an angular velocity w,, a moment of inertia I,, a kinetic energy 
1/2 I ,  w,”,and no potential energy. I�the kinetic energy of this rotation is less  than the total energy 
associated with the forced rotation, then rotation about the nominal axis is stable in the presence of 
energy dissipation. 

This stability criterion can be expressed as 
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which becomes 

2v
- > I - I o ,
w2 

for small a when I % I , .  

Analysis of Forced Rotation 

Potential Energy 

Locate o such that only one pair of booms is deflected. The potential energy of the system 
will  be 

M2V = 2 m d s ,  
0 

where M = bending moment, E1 = boom stiffness factor, and 4 = boom length. 

Lf we let 

the left hand side of the stability criterion becomes 

See Figure 2. 

Moment of Inertia 

The moment of inertia about the axis of forced 
rotation will  be 

I = I, c o s z a  + I, s in2 a 

I 

Figure 2-Deflected boom geometry. 
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where I, and I, a r e  central body moments of inertia, a is the radius at which the boom is attached, 
andp is the boom's lineal mass density. 

Now, 

so 

-I,) s in2  a + 2p [ r 2 - (a f s ) ' ]  ds .I - I, = ( I ~  

NOW dr/ds = cos ( a  - e) ,and r (0 )  = a cos a .  Thus for small a ,  

which becomes 

r 5 ( a + s )  - $ la+!:(! - l ) 2 d s l  . 

Then 

r 2  * ( a t s l 2  - a 2  ( a +  s )  i t  Is(: - 1)2ds] , 
0 

and 

Thus, for small a ,  the right hand side of the stability criterion becomes 
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Introducing the dimensionless quantities 

and 

the stability criterion becomes 

and a stability boundary can be written 

where 

pw* 8 4k = - .  
2EI 

Series Representation 

Now, let 

It follows that 
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( g ) 2 d u  = j ( n  + 1 - j )  dj+l4 n + 2 - jlo1 
n = l  j = 1  

The stability boundary thus becomes 

ROD ANALYSIS 

Equilibrium Beam Equations 

The equations of equilibrium for a thin rod and the constitutive relationship for an elastic rod 
a re  

and 


1 * 
M = E I x .  \fa 
See Figure 3. Figure 3-Planar bending of elastic rod. 

'Hildebrgnd, Francis  B., "Advanced Calculus for Applications," Prentice-Hall, Inc., Englewood Cl i f f s ,  N. J., 1964. 
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- -  

For the planar problem at hand, 

F = TU tQn, where T = tension, Q = shear; 

p = centrifugal loading = pw2 r; 

M = Mb, where M = bending moment, b = u x n; 

m = applied couples = 0 ;  

1 dBH = G ,  where e = slope of rod; 

du - dB dnds-- - n ;  and - = dB 
ds ds ds u s  

Now, the magnitude of .r is given by 

r = a c o s a  + 16c o s ( a - 8 ) d s  , 

and a unit vector parallel to r is 

f = u c o s ( a - 8 )  + n s i n ( a - 8 )  . 

Thus keeping only first order terms in the small angles a and 0 we have the approximation 

The equilibrium beam equations thus reduce to: 

dQ dB 
~ + T ~ + p w 2 ( a + s ) ( a - e )0 ,= 

The corresponding boundary conditions a re  

B ( 0 )  = M ( 8 )  = T(8) = Q(8) = 0 . 
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po2 

Ifwe ignore the product of the small terms Q and d@/ds, integrate the first equation, and com­
bine, we have 

d 3 6  p o 2EI 7 = 7 [ < a + 4 > 2 - < a + s ) 2 ]dB + p w 2 ( a + s ) ( a - e )  ,
ds  

d 3 6  - 2EI {2a(a+ s )  + ( 2 a 4 + 4 2 )  dB - 2 a ( s  dB + e ) -( s 2  E +zSe)} 
ds' 

e(o) = 
de ( 4 )  = 	

d2 B ( 4 )  = o . 
ds 

This equation integrates once, 

d 2 e  ­
~­
ds {a(a  + s > *  +4(2a  +4>0- 2ase - s 2  + c }  . 

Since 

d2 e 
~ 

ds 
( 4 )  = 0 , 

then 

Now, making the substitutions 

B S-
g5 = ; - 1 ,  u - 7 ,  E = 2: ,  

we have 

d2g5 ­~­
du k{< + 1 - EU - u  *}g5 9 

= k { E ( l - u ) + ( l + U ) ( l - u ) } + ,  

= k ( l + E + u ) ( l - u ) + .  
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The boundary conditions for this equation a re  

-d4 
4 ( 0 )  = - 1 I du (1) = 0 . 

Power Series Solution 

We now seek a power ser ies  solution of the form 

where N is large enough for convergence. 

To satisfy the boundary conditions, 

and 

Now 

and 
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N N- 1 

-keu+ = -Ekc+nun = keu -7:k e + n t l u n + l  , 
n =  1 n =  1 

Term by term comparison of the resulting equation yields 

and 

Now each of these terms will be the sum of a constant and a linear term in , b2 ,  Le. 4, = a i  

+ bi  @ 2 .  Thus it is convenient to express each as a complex quantity (a  i ,  b ). Then, when multiply­
ing terms by constants and forming linear combinations of terms, the constant and d 2  dependent por­
tions of the result are automatically obtained. 

With this convention, 
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- -  A - 

+2  is then determined from the boundary condition as follows: 

N- 1 

n+n+, = ( A ,  B) => A t B + ~  = o , 
n =  1 

..+;)
+2 = B - - ...k+Jfag(Z * 

Values for all other terms a r e  then calculated according to 

The previously mentioned "stability boundary" can be written as a function of k, E ,  and N: 

Limiting Cases 

In the extreme cases of infinite beam stiffness, where no deflection is possible, and vanishing 
beam stiffness, where the beam behaves as  though hinged, no potential energy is associated with 
the forced rotation. The stability boundary is then 

In the rigid rod case (k = 0), 

B = 0 ,  4 - 1  

so 

2 � 2  = - + e t - 2 .3 
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Thus for stability 

A I  = I, - I, < p t 3  [*+ E + 4 
Because the roll and pitch moments of inertia of the undistorted satellite are  

respectively, and because E = 2( a / t ) ,  then 

A I, + p t 3  - + s + l  1 ,K 
I , - I ,  < C - I R - A + I p ,  

C > A .  

so that the stability criterion reduces to the familiar llrigid body" criterion. 

In the hinged rod case (k = a), 

e = a ,  + e o  

so 

Consider the possibility of a forced rota­
tion, with hinged booms, being stable. Then, 
the torque on the central body caused by the 
centrifugal forces on the hinged booms (Figure 
4) must be just enough to maintain a constant 
angular velocity in body coordinates, i.e. 

w x  = 0 ,  

w 5 w s i n a  , 

w z  = w c o s a  . Figure 4-Steady 

w 

spin with hinged rods. 
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The torque on the central body is 

T = Tx - 2(a s i n a )  [ p ( a c o s a + s )  w 2 d s  , 

= - 2 a p s 2  s i n a  

The Euler equations reduce to one, 

For small a ,  

AI E 
- = T ( l + � ) ,
P t 3  

which is identical to the stability boundary above. 

RESULTS 

The "stability boundary" dealt with above represents a maximum value of A I / , d 3  for which 
the attitude motion of the spacecraft will be stable. If one plots this quantity as a function of the 
parameter k for some value of E ,  the region above the curve represents unstable combinations 
of variables and the region below stable configurations. Consideration of the limiting cases just 
described produces the values of AI/&3 asymptotically approached by the ends of the curve. For 
the general case 0 < k m, points were calculated by the digital computation method described 
in this report. 

Figure 5 and Table 1 show the results obtained for intermediate values 0 f . k  and several 
values of E .  The dashed lines indicate asymptotic values for k = 0 and k = m. 

Parameter definitions pertinent to use of the figure are: 

A I  = maximum tolerable moment of inertia difference for the central body, 
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P = lineal mass density of booms, 

4 = length of each boom, 

E = 2 44,where a = radius at which boom is attached; 

and 

where = spin rate, and E1 = boom stiffness factor. 
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Figure  5-Resultant s t a b i l i t y  c r i t e r i a .  
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.8867 1.0117 1.1467 

0.1 ,9967 1.1300 

Table 1 

Results (AI/,d3) in Tabular Form. 

0.3 0.4 


0 .6667 .7717 .8867 1.0117 1.1467
I- 0.1 .6564 .7599 .8734 ,9967 f 1.1300 

L 

1 .5787 .6722 .7751 .8875 1.0092 

10 .3023 .3719 .4508 -5393 .6374 

100 .OS97 .1594 .2289 .3083 .3974 

m .oooo .0550 .1200 ,1950 .2800 

From the monotonic nature of the curves, it is apparent that an increase in spin rate has a 
destabilizing effect, while an increase in boom stiffness (EI) is stabilizing. The effect of length 
and density changes are not so obvious, but, in the limiting cases of very small and very large k , 
it can be shown that increasing either one has a stabilizing effect. This is probably also true in 
general. 

In addition to the obvious use of these nondimensionalized results to check for attitude sta­
bility (given some arbitrary set of design parameters), one could use them to generate design 
charts of various types for  specific applications. For instance, one could display the stabilizing 
ability of a given type of boom (i.e., p and E1 specified), attached at a known radius a ,  by plotting 
AI versus boom length for various spin rates. An envelope for such curves can be determined 
from the "limiting case" stability boundaries above, i.e. 

Curves for various spin rates could be constructed by interpolation between data points 
generated as follows: 

1. Select arbitrary points (1, AI)  within the envelope. 
2. Compute corresponding E and AI/,d3 for each. 
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3. From Figure 5, determine values of k for each point. 
4. Calculate corresponding w ' s  from the equation 

2EIk
W2 = -

Figure 6 shows a qualitative example of 
such a chart. The upper and lower boundaries 
of the shaded region correspond to the cases 
w = 0 and w = 00, respectively. Fo r  a given AI 
and spin rate, the minimum boom length re­
quired for attitude stability can then be found 
from the plot as shown. 

Goddard Space Fl ight  Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, September 9 ,  1968 
124-08-05-24-51 

NASA-Langley, 1969 - 31 

d4 . 

- _ _ _  -
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Figure 6-Typical qualitative design chart. 
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